
HEP-CCE

HEP-CCE IOS: Analysis of I/O 
Behavior in HEP Workflows 

with Darshan
Shane Snyder (ANL), Doug Benjamin (ANL), Patrick Gartung (FNAL), Ken Herner 

(FNAL), Rui Wang (ANL)
10/11/22

1



HEP-CCE
Darshan background
Darshan is a lightweight tool that can capture 
details about the I/O behavior of applications
➢ Inform tuning decisions of app scientists
➢ Gain insight into I/O trends on large-scale 

computing platforms

Darshan’s design geared towards full-time 
deployment on HPC systems (currently on by 
default at ALCF, NERSC, OLCF, etc.)
➢ Transparent –  no app changes required
➢ Low overhead – minimal perturbations to app 

runtime
➢ Modular – instrumentation can be extended to 

account for new I/O technologies

Default mode: capture bounded statistical 
records of I/O activity for each file accessed 

by the app 

DXT (Darshan eXtended Tracing) mode: 
high-fidelity tracing of read/write operations

2



HEP-CCE
Darshan as a utility for HEP-CCE
Motivation: An ability to instrument the I/O behavior of HEP workflows is critical to 
characterizing and improving their usage of HPC storage
➢ The ongoing shift of HEP workflows to HPC facilities points to potential untapped I/O 

tuning opportunities here

Plan: Leverage Darshan in non-MPI mode to better understand HEP workflow I/O 
access patterns and performance characteristics

3



HEP-CCE

Darshan enhancements driven by
HEP workflows

4



HEP-CCE
Darshan handling of fork()
ATLAS AthenaMP framework leverages 
fork() to spawn worker processes that 
perform event processing and I/O 
independently

Darshan library not originally designed to 
handle fork() gracefully

• Child process inherits copy of the parent 
library state due to copy-on-write 
semantics – child instrumentation state 
reflects access patterns of parent 
pre-fork() and child process 
post-fork()

 master

master Darshan
Library state

5



HEP-CCE
Darshan handling of fork()
ATLAS AthenaMP framework leverages 
fork() to spawn worker processes that 
perform event processing and I/O 
independently

Darshan library not originally designed to 
handle fork() gracefully

• Child process inherits copy of the parent 
library state due to copy-on-write 
semantics – child instrumentation state 
reflects access patterns of parent 
pre-fork() and child process 
post-fork()

 master

 worker

fork()

master Darshan
Library state

worker Darshan
Library state

6

master input and master output files incorrectly 
accounted for in worker instrumentation state



HEP-CCE
Darshan handling of fork()
To address this Darshan was modified to 
properly handle apps that call fork()

• Use pthread_atfork() to register a 
callback that is executed before passing 
control to child process

• Darshan atfork callback re-initializes the 
library to clear all parent process state

• Child processes maintain mapping to 
corresponding parent process ID, 
allowing Darshan logs to capture process 
relationships

7

 master

 worker

fork()

master Darshan
Library state

worker Darshan
Library state



HEP-CCE
Darshan library runtime configuration
To bound memory overheads, Darshan imposes several internal memory limits

• Total memory for all module records
• Total memory for all record names
• Per-module limits on number of instrumented records

However, Darshan has traditionally offered insufficient mechanisms for fine-tuning 
library memory usage and instrumentation scope

8



HEP-CCE
Darshan library runtime configuration
To bound memory overheads, Darshan imposes several internal memory limits

• Total memory for all module records
• Total memory for all record names
• Per-module limits on number of instrumented records

However, Darshan has traditionally offered insufficient mechanisms for fine-tuning 
library memory usage and instrumentation scope

• No method to increase module record limits

9

Build and runtime configurable 

hardcoded



HEP-CCE
Darshan library runtime configuration
To bound memory overheads, Darshan imposes several internal memory limits

• Total memory for all module records
• Total memory for all record names
• Per-module limits on number of instrumented records

However, Darshan has traditionally offered insufficient mechanisms for fine-tuning 
library memory usage and instrumentation scope

• No method to increase module record limits
• Limited methods for restricting which record names to instrument

10

export DARSHAN_EXCLUDE_DIRS=”/home,/tmp”

Users can only exclude record names using directory prefixes

Build and runtime configurable 

hardcoded



HEP-CCE
Darshan library runtime configuration
This lack of user control can complicate full instrumentation of apps, particularly the 
Python frameworks used in HEP projects – often ROOT I/O is completely missed!

To address this problem, we added a
comprehensive runtime configuration
system to Darshan, allowing users to
control specific instrumentation settings:

• Active/inactive instrumentation modules
• Global and per-module memory limits
• Record name exclusions
• etc.

11



HEP-CCE
Darshan library runtime configuration
Full instrumentation of ATLAS AthenaMP requires 7000+ file records:

12

* File name regex code borrowed from Tyler Reddy (LANL)



HEP-CCE
Darshan library runtime configuration
Full instrumentation of ATLAS AthenaMP requires 7000+ file records:

3500+ header files

13



HEP-CCE
Darshan library runtime configuration
Full instrumentation of ATLAS AthenaMP requires 7000+ file records:

800+ Python source & compiled code

14



HEP-CCE
Darshan library runtime configuration
Full instrumentation of ATLAS AthenaMP requires 7000+ file records:

500+ shared libraries

15



HEP-CCE
Darshan library runtime configuration
Full instrumentation of ATLAS AthenaMP requires 7000+ file records:

and more…

16



HEP-CCE
Darshan library runtime configuration

Darshan record name exclusion/inclusion properties can help ensure we get the 
instrumentation data we want without exorbitant memory costs

17

and finally, a few ROOT files

Full instrumentation of ATLAS AthenaMP requires 7000+ file records:



HEP-CCE
Potential next steps with Darshan in IOS
Utilize new Darshan instrumentation modules to better understand I/O behavior of 
other IOS activities
➢ HDF5 module: insights into DUNE HDF5 usage, ROOT→HDF5 serialization efforts
➢ DAOS module: insights into ROOT’s RNTuple DAOS backend

Utilize PyDarshan log analysis tools and extend them to help analyze I/O 
characteristics of HEP workflows

18


